Question #a4b38

1 Answer
Dec 21, 2016

Given

sin(A+B)/cos(A-B) = (1-m)/(1+m)

Let pi/4-A=x and pi/4-B =y

So pi/2-(A+B)=(x+y)

=>cos(pi/2-(A+B))=cos(x+y)

=>sin(A+B)=cos(x+y)

Again (A-B)=(y-x)

cos(A-B)=cos(y-x)

Now

cos(x+y)/cos(y-x) = (1-m)/(1+m)

=>cos(x-y)/cos(y+x) = (1+m)/(1-m)

By componendo and dividendo

=>(cos(y-x)+cos(y+x))/ (cos(y-x)-cos(y+x))=2/(2m)

=>(2cosxcosy)/(2sinxsiny)=1/m

=>coty/tanx=1/m

=>tanx=mcoty

=>tan(pi/4-A)=mcot(pi/4-B)

Proved