LHS=2sin^6x+2cos^6x+1
=2((sin^2x)^3+(cos^2x)^3+1
=2((sin^2+cos^2x)^3-3sin^2xcos^2x(sin^2x+cos^2x)+1
=2*(1)^3-3*2*sin^2xcos^2x*(1)+1
=3-3*2*sin^2xcos^2x
=3(1^2-2*sin^2xcos^2x)
=3((sin^2x+cos^2x)^2-2*sin^2xcos^2x)
=3((sin^2x)^2+(cos^2x))^2
=3(sin^4x+cos^4x)
=3sin^4x+3cos^4x=RHS
Proved