Question #77e3a

1 Answer
Dec 21, 2016

LHS=2sin^6x+2cos^6x+1

=2((sin^2x)^3+(cos^2x)^3+1

=2((sin^2+cos^2x)^3-3sin^2xcos^2x(sin^2x+cos^2x)+1

=2*(1)^3-3*2*sin^2xcos^2x*(1)+1

=3-3*2*sin^2xcos^2x

=3(1^2-2*sin^2xcos^2x)

=3((sin^2x+cos^2x)^2-2*sin^2xcos^2x)

=3((sin^2x)^2+(cos^2x))^2

=3(sin^4x+cos^4x)

=3sin^4x+3cos^4x=RHS

Proved