How do you prove the identity (sin^3x - cos^3x)/(sinx - cosx) =1 + sinxcosx?

2 Answers
Dec 20, 2016

Start by factoring sin^3x- cos^3x using the difference of cubes formula a^3 - b^3 = (a- b)(a^2 + ab + b^2).

So,

(sin^3x - cos^3x)/(sinx - cosx) = 1 + sinxcosx

((sinx - cosx)(sin^2x + sinxcosx + cos^2x))/(sinx - cosx) = 1 + sinxcosx

The sinx - cosx cancel each other out.

sin^2x + sinxcosx + cos^2x = 1 + sinxcosx

Use the identity sin^2theta + cos^2theta = 1:

1 + sinxcosx = 1 + sinxcosx

LHS = RHS

Hopefully this helps!

Dec 20, 2016

See below.

Explanation:

From the polynomial identity

(a^3-b^3)/(a-b)=a^2+a b + b^2 we conclude that

(sin^3x-cos^3x)/(sinx-cosx) = sin^2x+sin x cos x + cos^2x = 1+sinxcosx