Question #ac9e3

2 Answers
Dec 18, 2016

See the proof below

Explanation:

We use

tanx=sinx/cosx

sin^2x+cos^2x=1

LHS, tan^2x/(secx+1)=(sin^2x/cos^2x)/(1/cosx+1)

=sin^2x/(cos^2x+cosx)

=(1-cos^2x)/(cosx(1+cosx))

=(cancel(1+cosx)(1-cosx))/(cosxcancel(1+cosx))

=(1-cosx)/cosx

=RHS

Q.E.D

Dec 18, 2016

LHS=tan^2x/(secx+1)

=sin^2x/(cos^2x(secx+1))

=(1-cos^2x)/(cosx*cosx(secx+1))

=((1-cosx)(1+cosx))/(cosx(cosx*secx+cosx))

=((1-cosx)cancel((1+cosx)))/(cosxcancel((1+cosx)))

=(1-cosx)/cosx=RHS

Proved