How do you show that cosx/(1 - tanx) - sin^2x/(cosx- sinx) = cosx + sinx?

2 Answers
Oct 31, 2016

The following identities are important for this problem:

-tantheta = sintheta/costheta

cosx/(1 - sinx/cosx) - sin^2x/(cosx - sinx) = cosx + sinx

cosx/((cosx - sinx)/cosx) - sin^2x/(cosx - sinx) = cosx + sinx

cos^2x/(cosx - sinx) - sin^2x/(cosx - sinx) = cosx + sinx

(cos^2x - sin^2x)/(cosx - sinx) = cosx + sinx

Factor the numerator on the left as a difference of squares, a^2 - b^2 = (a + b)(a - b).

((cosx + sinx)(cosx - sinx))/(cosx - sinx) = cosx + sinx

cosx + sinx = cosx + sinx

Identity Proved!!

Hopefully this helps!

Oct 31, 2016

LHS=cosx/(1-tanx)-sin^2x/(cosx-sinx)

=cos^2x/(cosx(1-sinx/cosx))-sin^2x/(cosx-sinx)

=cos^2x/(cosx-sinx)-sin^2x/(cosx-sinx)

=(cos^2x-sin^2x)/(cosx-sinx)

=((cosx+sinx)cancel((cosx-sinx)))/cancel((cosx-sinx))

=cosx+sinx=RHS

Proved