Question #fa8db Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Oct 21, 2016 See Below Explanation: #sin (3x)=3sin x-4sin^3 x# Use the formulas #sin (A+B) = sin A cos B + cos A sin B# #sin 2A = 2sin A cos A# #cos 2A = 1- 2 sin ^ 2 A# Left Side: #sin 3x=sin(2x+x)=sin2xcosx+cos2xsin x# #=2sinx cosx cosx + (1-2sin^2 x)sin x# #=2sinx cos^2 x+ sinx-2sin^3 x# #=2sinx(1-sin^2 x) + sinx-2 sin^3 x# #=2 sin x-2sin^3 x + sin x -2 sin^3 x# #=3 sin x -4 sin^ 3 x# #=# Right Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 1059 views around the world You can reuse this answer Creative Commons License