Prove that cos(4x)=8 cos(x)^4 - 8 cos(x)^2 +1 ?

1 Answer
Oct 11, 2016

cos(4x)=8 cos(x)^4 - 8 cos(x)^2 +1

Explanation:

Using de Moivre's identity

e^(ix)=cos(x)+isin(x) we obtain

e^(4ix) = cos(4x)+isin(4x) = (cos(x)+isin(x))^4

but

(cos(x)+isin(x))^4=Cos(x)^4 - 6 Cos(x)^2 Sin(x)^2 + Sin(x)^4 + i (4 Cos(x)^3 Sin(x) - 4 Cos(x) Sin(x)^3)

Keeping the real component

cos(4x)=Cos(x)^4 - 6 Cos(x)^2 Sin(x)^2 + Sin(x)^4 =
=Cos(x)^4+ 6 Cos(x)^2(1-cos(x)^2)+(1-cos(x)^2)^2=
=8 cos(x)^4 - 8 cos(x)^2 +1