Question #c070f

1 Answer
Oct 9, 2016

Using the double angle formulas and combing the fractions and simplifying the algebra

Explanation:

to prove
sec(2x)+tan(2x)=(1+tan(x))/(1-tan(x))

take LHS

sec(2x)+tan(2x)= 1/cos(2x) +2tan(x)/(1-tan^2(x))

=1/(cos^2(x)-sin^2(x))+2tan(x)/(1-tan^2(x))

Divide every term of the first fraction by cos^2(x)

=(1/cos^2(x))/(cos^2(x)/cos^2(x)-sin^2(x)/cos^2(x))+2tan(x)/(1-tan^2(x))

=sec^2(x)/(1-tan^2(x))+2tan(x)/(1-tan^2(x))

=(1+tan^2(x))/(1-tan^2(x))+2tan(x)/(1-tan^2(x))

=(1+2tan(x)+tan^2(x))/(1-tan^2(x))

=(1+tan(x))^2/((1-tan(x))(1+tan(x))

cancelling a (1+tan(x)) bracket

=(1+tan(x))/(1-tan(x)

as required.