Prove that secx-cosx=tanxsinx?

2 Answers
Oct 8, 2016

Please see below.

Explanation:

secx-cosx

= 1/cosx-cosx

= (1-cos^2x)/cosx

= sin^2x/cosx

= sinx/cosx xxsinx

= tanxsinx

Oct 8, 2016

I believe you have made an error in the question as:

sec(x)-cos(x)-=1/cosx-cosx

:.sec(x)-cos(x) -=1/cosx-cosx*cosx/cosx

:.sec(x)-cos(x) -=1/cosx-cos^2x/cosx

:.sec(x)-cos(x) -=(1-cos^2x)/cosx

:.sec(x)-cos(x) -=(sin^2x)/cosx (using sin^2x+cos^2x-=1)

:.sec(x)-cos(x) -=sinx/cosx*sinx

:.sec(x)-cos(x) -=tanx*sinx