Question #7cfc8

1 Answer
Oct 5, 2016

Proof below

Explanation:

First we will find the expansion of sin(3x) separately (this will use the expansion of trig functions formulae):
sin(3x)=sin(2x+x)
=sin2xcosx+cos2xsinx
=2sinxcosx*cosx+(cos^2x-sin^2x)sinx
=2sinxcos^2x+sinxcos^2x-sin^3x
=3sinxcos^2x-sin^3x
=3sinx(1-sin^2x)-sin^3x
=3sinx-3sin^3x-sin^3x
=3sinx-4sin^3x

Now to solve the original question:
(sin3x)/(sinx)=(3sinx-4sin^3x)/sinx
=3-4sin^2x
=3-4(1-cos^2x)
=3-4+4cos^2x
=4cos^2x-1
=4cos^2x-2+1
=2(2cos^2x-1)+1
=2(cos2x)+1