Question #14663

1 Answer
Aug 4, 2016

The Proof is given below in Explanation.

Explanation:

We will use the Identity : sec^2A-tan^2A=1.

Let us divide the Nr. and Dr. of L.H.S by cosA to get,

The L.H.S. ={(sinA+1-cosA)/cosA}/{(sinA-1+cosA)/cosA

={sinA/cosA+1/cosA-cosA/cosA}/{sinA/cosA-1/cosA+cosA/cosA}

=(tanA+secA-1)/(tanA-secA+1}

={tanA+secA-(sec^2A-tan^2A)}/(tanA-secA+1)

={(tanA+secA)-(secA+tanA)(secA-tanA)}/(tanA-secA+1)

={(secA+tanA)cancel((1-secA+tanA))}/cancel((tanA-secA+1)

=secA+tanA

= The R.H.S.

Hence, the Proof. Enjoy Maths.!

II^(nd) Method :-

We have, 1-sin^2A=cos^2A

rArr (1+sinA)(1-sinA)=cos^2A

rArr (1+sinA)/cosA=cosA/(1-sinA)

:. Each Rratio ={(1+sinA)-(cosA)}/{(cosA)-(1-sinA)}, i.e.,

Each Ratio=(1+sinA-cosA)/(cosA-1+sinA).

In particular, (1+sinA)/cosA=(1+sinA-cosA)/(cosA-1+sinA), or,

1/cosA+sinA/cosA=(1+sinA-cosA)/(cosA-1+sinA).

rArr secA+tanA=(1+sinA-cosA)/(cosA-1+sinA).