Question #4d51c

2 Answers
Jul 21, 2016

LHS=sinx(1+tanx)+cosx(1+cotx)

=sinx(1+tanx)+cosx(1+1/tanx)

=sinx(1+tanx)+cosx((1+tanx)/tanx)

=(1+tanx)(sinx+cosx/tanx)

=(1+tanx)(sinx+cosx/(sinx/cosx))

=(1+tanx)(sinx+cos^2x/sinx)

=(1+tanx)((sin^2x+cos^2x)/sinx)

=(1+tanx)/sinx

=1/sinx+cancel(sinx)/cosx*1/cancel(sinx)

=cscx+secx=RHS

Proved

Jul 21, 2016

LHS=sinx(1+tanx)+cosx(1+cotx)

=sinx+(sinx*sinx)/cosx+cosx+(cosx*cosx)/sinx

=sinx+sin^2x/cosx+cosx+cos^2x/sinx

=sinx+(1-cos^2x)/cosx+cosx+(1-sin^2x)/sinx

=sinx+1/cosx-cos^2x/cosx+cosx+1/sinx-sin^2x/sinx

=cancelsinx+secx-cancelcosx+cancelcosx+cscx-cancelsinx

secx+cscx=RHS