LHS=cos3x-sin3x
=4cos^3x-3cosx-(3sinx-4sin^3x)
=4cos^3x+4sin^3x-3cosx-3sinx
=4(cos^3x+sin^3x)-3(cosx+sinx)
=4(cosx+sinx)(cos^2x-cosxsinx+sin^2x)-3(cosx+sinx)
=4(cosx+sinx)(1-cosxsinx)-3(cosx+sinx)
=(cosx+sinx)(4-4cosxsinx-3)
=(cosx+sinx)(1-4cosxsinx)=RHS
Proved