Question #217eb
1 Answer
Explanation:
First of all, the function can be simplified.
Call the function
f(x) = (xtanx)/(1/cosx + sinx/cosx)
f(x) = (xtanx)/((1 + sinx)/cosx)
f(x) = (xtanx(cosx))/(1 + sinx)
f(x) = (xsinx/cosx(cosx))/(1 + sinx)
f(x) = (xsinx)/(1 + sinx)
We now differentiate this using the quotient rule. The quotient rule states that for a function
Hence:
f'(x) = ((sinx + xcosx)(1 + sinx) - xsinxcosx)/(1 + sinx)^2
f'(x) = (sinx + xcosx+ sin^2x + xcosxsinx - xcosxsinx)/(1 + sinx)^2
f'(x) = (sin^2x + sinx + xcosx)/(1 + sinx)^2
Hopefully this helps!