Determining the Slope and Tangent Lines for a Polar Curve
Key Questions
-
By converting into parametric equations,
{(x(theta)=r(theta)cos theta=cos2theta cos theta), (y(theta)=r(theta)sin theta=cos2theta sin theta):} By Product Rule,
x'(theta)=-sin2theta cos theta-cos2theta sin theta x'(pi/2)=-sin(pi)cos(pi/2)-cos(pi)sin(pi/2)=1 y'(theta)=-sin2thetasin theta+cos2theta cos theta y'(pi/2)=-sin(pi)sin(pi/2)+cos(pi)cos(pi/2)=0 So, the slope
m of the curve can be found bym={dy}/{dx}|_{theta=pi/2}={y'(pi/2)}/{x'(pi/2)}=0/1=0 I hope that this was helpful.
-
Answer:
The equation of the tangent line is
y-7/2={11sqrt{3}}/5(x-{7sqrt{3}}/2) Explanation:
In order to find the equation of a line, we need two pieces of information:
{(1. "Point: " (x_1,y_1)),(2. "Slope: " m):} Let us find
(x_1,y_1) .Since
{(x(theta)=rcos theta=(3+8sin theta)cos theta),(y(theta)=rsin theta=(3+8sin theta)sin theta):} ,x_1=x(pi/6)=[3+8sin(pi/6)]cos(pi/6)={7sqrt{3}}/2 y_1=y(pi/6)=[3+8sin(pi/6)]sin(pi/6)=7/2 Now, let us find
m .By differentiating with respect to theta#,
{dx}/{d theta}=8cos theta cdot cos theta+(3+8sin theta)cdot(-sin theta) =8(cos^2theta-sin^2theta)-3sin theta =8cos(2theta)-3sin theta {dy}/{d theta}=8cos theta cdot sin theta+(3 + 8sin theta)cdot cos theta =8(2sin theta cos theta)+3cos theta =8sin(2theta)+3cos theta So,
{dy}/{dx}={{dy}/{d theta}}/{{dx}/{d theta}}={8sin(2theta)+3cos theta}/{8cos(2theta)-3sin theta} Now, we can find
m .m={dy}/{dx}|_{theta=pi/6} ={8({sqrt{3}}/2)+3({sqrt{3}}/2)}/{8(1/2)-3(1/2)}={11sqrt{3}}/5 By Point-Slope Form:
y-y_1=m(x-x_1) ,y-7/2={11sqrt{3}}/5(x-{7sqrt{3}}/2) -
A polar equation of the form
r=r(theta) can be converted into a pair of parametric equations{(x(theta)=r(theta)cos theta),(y(theta)=r(theta)sin theta):} .The slope
m of the tangent line attheta=theta_0 can be expressed asm={dy}/{dx}|_{theta=theta_0}={{dy}/{d theta}|_{theta=theta_0}}/{{dx}/{d theta}|_{theta=theta_0}}={y'(theta_0)}/{x'(theta_0)} .I hope that this was helpful.