How do you find the slope of the polar curve r=3sec(2theta)r=3sec(2θ) at theta=pi/6θ=π6 ?

1 Answer
Sep 21, 2014

The slope of the curve r=3sec(2theta)r=3sec(2θ) at theta=pi/6θ=π6 is {3sqrt{3}}/5335.

Let us look at some details.

We can write

{(x=rcos theta=3sec(2theta)cos theta),(y=rsin theta=3sec(2theta)sin theta):}

{dx}/{d theta}=3[2sec(2theta)tan(2theta)cdot cos theta+sec(2 theta)cdot(-sin theta)]

=3sec(2theta)[2tan(2theta)cos theta-sin theta]

{dy}/{d theta}=3[2sec(2theta)tan(2theta)cdot sin theta+sec(2theta)cdot cos theta]

=3sec(2theta)[2tan(2theta)sin theta+cos theta]

So,

{dy}/{dx}={{dy}/{d theta}}/{{dx}/{d theta}}={3sec(2theta)[2tan(2theta)sin theta+cos theta]}/{3sec(2theta)[2tan(2theta)cos theta-sin theta]}

by cancelling out 3sec(2theta),

={2tan(2theta)sin theta+cos theta}/{2tan(2theta)cos theta-sin theta}

Now, we can find the slope m by pluggin in theta=pi/6.

m={dy}/{dx}|_{theta=pi/6}={2(sqrt{3})(1/2)+sqrt{3}/2}/{2(sqrt{3})(sqrt{3})/2-1/2}={3sqrt{3}}/{5}