How do you simplify (x^3 - 9x) / (x^2 - 7x + 12)?

2 Answers
May 21, 2018

(x(x+3))/(x-4)

Explanation:

"factorise numerator and denominator"

color(magenta)"factor numerator"

"take out a "color(blue)"common factor "x

=x(x^2-9)

x^2-9" is a "color(blue)"difference of squares"

"which factors in general as"

•color(white)(x)a^2-b^2=(a-b)(a+b)

"here "a=x" and "b=3

rArrx^2-9=(x-3)(x+3)

rArrx^3-9x=x(x-3)(x+3)larrcolor(red)"factorised form"

color(magenta)"factor denominator"

"the factors of + 12 which sum to - 7 are - 3 and - 4"

rArrx^2-7x+12=(x-3)(x-4)larrcolor(red)"factored form"

rArr(x^3-9x)/(x^2-7x+12)

=(x(x-3)(x+3))/((x-3)(x-4))

"cancel the "color(blue)"common factor "(x-3)

=(xcancel((x-3))(x+3))/(cancel((x-3))(x-4))=(x(x+3))/(x-4)

"with restriction "x!=4

May 21, 2018

(x(x+3))/(x-4

Explanation:

(x^3-9x)/(x^2-7x+12)
color(teal)(=(x(x^2-9))/(x^2-3x-4x+12)

color(blue)(=(x(x+3)(x-3))/((x-3)(x-4))

color(magenta)(=(x(x+3)cancel((x-3)))/(cancel((x-3))(x-4))

color(green)(=(x(x+3))/(x-4

Ans that's your answer.

P.S.: Isn't the solution color(blue)colorful?