How do I prove this? cot(x)(1-cos(2x))=sin(2x)

4 Answers
Apr 13, 2018

LHS=cotx(1-cos2x)

=cosx/sinx*2sin^2x

=2sinx*cosx=sin2x=RHS

ccolor(purple)(ot(x)(1-cos(2x))=sin(2x)

Explanation:

color(green)(N.B: cos(2x) = cos^2x - sin^2x

color(green)(sin(2x) = 2sinxcosx

cot(x) = 1/tan(x) = 1/ (sinx/cosx) = cos(x)/sin(x)

cot(x)(1-cos(2x))

=> [cos(x)/sin(x)] [1- ( cos^2x - sin^2x)]

=> [cos(x)/sin(x)] [1- cos^2x + sin^2x]

=> [cos(x)/sin(x)] [( sin^2x + cos^2x) - cos^2x + sin^2x]

=> [cos(x)/sin(x)] [2sin^2x]

=>2sinxcosx

Since

sin(2x) = 2sinxcosx

Hence,

color(crimson)(cot(x)(1-cos(2x)) = sin(2x)

Q. E. D

Apr 13, 2018

cotx(1-cos2x)=sin2x

Explanation:

convert cotx into sins and cosines with the identity

cotx=cosx/sinx

cosx/sinx(1-cos2x)=sin2x

turn sin2x in terms of a single multiple of x using the double angle formula

sin2x=2cosxsinx

cosx/sinx(1-cos2x)=2cosxsinx

expand the brackets

cosx/sinx+(-cosx*cos2x)/sinx=2cosxsinx

using one of the double angle formula for cosine

cos2x=1-2sinx

substitute

cosx/sinx+(-cosx(1-2sin^2x))/sinx=2cosxsinx

expand the brackets

cosx/sinx+(-cosx+2cosxsin^2x)/sinx=2cosxsinx

add the fractions

(cosx-cosx+2cosxsin^2x)/sinx=2cosxsinx

cancel cosx

(cancel(cosx-cosx)+2cosxsin^2x)/sinx=2cosxsinx

(2cosxsin^cancel(2)x)/cancelsinx=2cosxsinx

2cosxsinx=2cosxsinx

Apr 13, 2018

"see explanation"

Explanation:

"using the "color(blue)"trigonometric identities"

•color(white)(x)cotx=cosx/sinx

•color(white)(x)cos2x=2cos^2x-1" and "sin2x=2sinxcosx

•color(white)(x)sin^2x+cos^2x=1

"consider the left side"

rArrcosx/sinx(1-(2cos^2x-1))

=cosx/sinx(2-2cos^2x)

=cosx/sinx(2(1-cos^2x))

=cosx/sinx(2sin^2x)

=2sinxcosx

=sin2x="right side "rArr"verified"