How do you use the definition of a derivative to find f' given f(x)=sqrt(4x+3)f(x)=4x+3 at x>-3/4?

1 Answer
Jun 24, 2017

f'=2/sqrt(4x+3)

See below for derivation

Explanation:

The first principle defines the derivative of a function f as such:
f'=lim_(h->0)(f(x+h)-f(x))/(h)

We let f=sqrt(4x+3)
Then
f'=lim_(h->0)(sqrt(4(x+h)+3)-sqrt(4x+3))/(h)

=lim_(h->0)1/h*(sqrt(4x+4h+3)-sqrt(4x+3))

=lim_(h->0)1/h*(sqrt(4x+4h+3)-sqrt(4x+3))*(sqrt(4x+4h+3)+sqrt(4x+3))/(sqrt(4x+4h+3)+sqrt(4x+3))

=lim_(h->0)1/h*((sqrt(4x+4h+3))^2-(sqrt(4x+3))^2)/(sqrt(4x+4h+3)+sqrt(4x+3))

=lim_(h->0)1/h*(4x+4h+3-4x-3)/(sqrt(4x+4h+3)+sqrt(4x+3))

=lim_(h->0)1/h*(4h)/(sqrt(4x+4h+3)+sqrt(4x+3))

=lim_(h->0)4/(sqrt(4x+4h+3)+sqrt(4x+3))

=4/(sqrt(4x+0+3)+sqrt(4x+3))

=4/(2sqrt(4x+3))

=2/sqrt(4x+3)