Question #348ea Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Mar 2, 2017 see below Explanation: Use the Reciprocal Property #cot v=1/tanv or tan v=1/cotv# Left Hand Side: #(1+tan v)/(1-tan v) =( 1+1/cot v)/(1-1/cot v)# #=(cot v/cotv +1/cot v)/(cot v/cot v-1/cot v)# #=((cotv+1)/cotv)/((cotv-1)/cotv)# #=(cotv+1)/cotv * cot v/(cot v-1)# #=(cotv+1)/cancelcotv * cancelcot v/(cot v-1)# #=(cot v+1)/(cot v-1)# #:.=# Right Hand Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 1232 views around the world You can reuse this answer Creative Commons License