How do you use demoivre's theorem to simplify [2(cos((pi)/2)+isin((pi)/2))]^8?

1 Answer

[2(cos(pi/2)+isin(pi/2))]^8=256

Explanation:

According to de Moivre's Theorem we can calculate any integer power of a complex number given in trigonometric form.

The theorem says that:

If a complex number z is given in a form:

z=|z|(cosvarphi+isinvarphi)

Then the n-th power of z is:

z^n=|z|^n(cosnvarphi+isinnvarphi)

Using this formula we get:

[2(cos(pi/2)+isin(pi/2))]^8=2^8[cos((8pi)/2)+isin((8pi)/2)]=

=256[cos4pi+isin4pi]=256