How do you use demoivre's theorem to simplify [2(cos((pi)/2)+isin((pi)/2))]^8[2(cos(π2)+isin(π2))]8?

1 Answer

[2(cos(pi/2)+isin(pi/2))]^8=256[2(cos(π2)+isin(π2))]8=256

Explanation:

According to de Moivre's Theorem we can calculate any integer power of a complex number given in trigonometric form.

The theorem says that:

If a complex number zz is given in a form:

z=|z|(cosvarphi+isinvarphi)z=|z|(cosφ+isinφ)

Then the n-thnth power of zz is:

z^n=|z|^n(cosnvarphi+isinnvarphi)zn=|z|n(cosnφ+isinnφ)

Using this formula we get:

[2(cos(pi/2)+isin(pi/2))]^8=2^8[cos((8pi)/2)+isin((8pi)/2)]=[2(cos(π2)+isin(π2))]8=28[cos(8π2)+isin(8π2)]=

=256[cos4pi+isin4pi]=256=256[cos4π+isin4π]=256