How do you differentiate sin^3(x)cos(x)sin3(x)cos(x)?

1 Answer
May 20, 2016

3sin^2x . cos^2x-sin^4x3sin2x.cos2xsin4x

Explanation:

\frac{d}{dx}(\sin ^3(x)\cos (x))ddx(sin3(x)cos(x))

Applying product rule,

(f\cdot g)^'=f^'\cdot g+f\cdot g^'

f=\sin ^3(x),\g=\cos(x)

=\frac{d}{dx}(\sin ^3(x))\cos (x)+\frac{d}{dx}(\cos (x)\right)\sin ^3(x)

We have,
\frac{d}{dx}(\sin ^3(x))=3\sin ^2(x)\cos(x)
Also,
\frac{d}{dx}(\cos (x))=-\sin (x)

=3\sin ^2(x)\cos(x)\cos (x)+(-\sin (x))\sin ^3(x)

Simplifying it,we get,
=3\sin ^2(x)\cos ^2(x)-\sin ^4(x)