What is the sum of the geometric sequence -1, 6, -36, ... if there are 7 terms?

2 Answers
Sep 2, 2015

#S_7=-39991#

Explanation:

In this sequence we have: #a_1=-1#, #q=-6#, #n=7#. If we apply the formula for #S_n# we get:

#S_7=(-1)*(1-(-6)^7)/(1-(-6))#

#S_7=(-1)*(1+279936)/7#

#S_7=-39991#

Aug 20, 2016

#S_n = -39,991#

Explanation:

In the given GP, we have the following:

#a_1 = -1, and n = 7#

We can find #r = 6/-1 =-36/6= -6#

There are 2 formulae for #S_n# depending on whether r is a proper fraction or not.

#S_n = (a(r^n - 1))/(r-1)" substitute with the values"#

#S_n = (-1((-6)^7 - 1))/(-6-1)#

#S_n = (-1((-6)^7 - 1))/(-6-1)#

#S_n = (-1(-279,937))/(-7)#

#S_n = -39,991#