What is the sum of the geometric sequence -1, 6, -36, ... if there are 7 terms?

2 Answers
Sep 2, 2015

S_7=-39991S7=39991

Explanation:

In this sequence we have: a_1=-1a1=1, q=-6q=6, n=7n=7. If we apply the formula for S_nSn we get:

S_7=(-1)*(1-(-6)^7)/(1-(-6))S7=(1)1(6)71(6)

S_7=(-1)*(1+279936)/7S7=(1)1+2799367

S_7=-39991S7=39991

Aug 20, 2016

S_n = -39,991Sn=39,991

Explanation:

In the given GP, we have the following:

a_1 = -1, and n = 7a1=1,andn=7

We can find r = 6/-1 =-36/6= -6r=61=366=6

There are 2 formulae for S_nSn depending on whether r is a proper fraction or not.

S_n = (a(r^n - 1))/(r-1)" substitute with the values"Sn=a(rn1)r1 substitute with the values

S_n = (-1((-6)^7 - 1))/(-6-1)Sn=1((6)71)61

S_n = (-1((-6)^7 - 1))/(-6-1)Sn=1((6)71)61

S_n = (-1(-279,937))/(-7)Sn=1(279,937)7

S_n = -39,991Sn=39,991