What is the integral of (x^2)(lnx)? Calculus Techniques of Integration Integration by Parts 1 Answer Cem Sentin Apr 6, 2018 int x^2*Lnx*dx=x^3/3*Lnx-x^3/9+C Explanation: After setting dv=x^2*dx and u=Lnx for using integration by parts, v=x^3/3 and du=dx/x Hence, int udv=uv-int vdu int x^2*Lnx*dx=x^3/3*Lnx-int x^3/3*dx/x =x^3/3*Lnx-int x^2/3*dx =x^3/3*Lnx-x^3/9+C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 69886 views around the world You can reuse this answer Creative Commons License