What is the integral of (x^2)(lnx)?

1 Answer
Apr 6, 2018

int x^2*Lnx*dx=x^3/3*Lnx-x^3/9+C

Explanation:

After setting dv=x^2*dx and u=Lnx for using integration by parts, v=x^3/3 and du=dx/x

Hence,

int udv=uv-int vdu

int x^2*Lnx*dx=x^3/3*Lnx-int x^3/3*dx/x

=x^3/3*Lnx-int x^2/3*dx

=x^3/3*Lnx-x^3/9+C