How do I find the integral intln(2x+1)dx ?

1 Answer
Sep 20, 2014

By Substitution and Integration by Parts,

int ln(2x+1)dx=1/2(2x+1)[ln(2x+1)-1]+C

Let us look at some details.

int ln(2x+1)dx

by the substitution t=2x+1.
Rightarrow {dt}/{dx}=2 Rightarrow {dx}/{dt}=1/2 Rightarrow dx={dt}/{2}

=1/2int ln t dt

by Integration by Parts,
Let u=ln t and dv=dt
Rightarrow du=dt/t and v=t

=1/2(tlnt-int dt)

=1/2(tlnt-t)+C

by factoring out t,

=1/2t(lnt-1)+C

by putting t=2x+1 back in,

=1/2(2x+1)[ln(2x+1)-1]+C