How do I find the integral int(cos(x)/e^x)dx ?

1 Answer
Sep 21, 2014

int{cosx}/e^xdx={e^{-x}}/2(sinx-cosx)+C

Let us look at some details.

Let

I=int{cos x}/{e^x}dx

by rewritng 1/e^x as e^{-x},

=int e^{-x}cos x dx

by Integration by Parts

Let u=e^{-x} and dv=cosx dx
Rightarrow du=-e^{-x}dx and v=sin x

=e^{-x}sinx+int e^{-x}sinx dx

by another Integration by Parts,

Let u=e^{-x} and dv=sinx dx
Rightarrow du=-e^{-x}dx and v=-cosx

=e^{-x}sinx-e^{-x}cosx-I

So, we have

I=e^{-x}(sinx-cosx)-I

by adding I,

2I=e^{-x}(sinx-cosx)

by dividing by 2,

I={e^{-x}}/2(sinx-cosx)+C