What is the distance between the following polar coordinates?: (3,(pi)/2), (2,(13pi)/12) (3,π2),(2,13π12)

1 Answer
Nov 9, 2016

abs((3,pi/2):(2,(13pi)/12)) =4.9589(3,π2):(2,13π12)=4.9589 (approx.)

Explanation:

Converting the polar coordinates to rectangular form:
(see image to help see the relationship)

color(red)(Pt_1 =(3,pi/2) rarr (3,0)Pt1=(3,π2)(3,0)

color(blue)(Pt_2=(2,(13pi)/12) rarr (-2cos(pi/12),-2sin(pi/12))~~(-1.93185,-0.51764))Pt2=(2,13π12)(2cos(π12),2sin(π12))(1.93185,0.51764)

abs(Pt_1:Pt_2) = sqrt((3-(-1.93185))^2+(0-(-0.51764))^2)~~4.9589|Pt1:Pt2|=(3(1.93185))2+(0(0.51764))24.9589

enter image source here