Let #y=x^sinx#. We will use logarithmic differentiation to calculate #dy/dx#.
#logy=log(x^sinx)#
#logy=sinxlogx#
Now, differentiating both sides with respect to #x#, we have
#d/dx(logy)=d/dx(sinxlogx)#
To compute the left side, remember the chain rule:
#y=f(g(x))iffdy/dx=f'(g(x))g'(x)#. Letting #f(x)=logx# and #g(x)=y#, the left side becomes #d/dx(logy)=1/ydy/dx#.
#:.1/ydy/dx=d/dx(sinxlogx)#
To differentiate #sinxlogx#, remember the product rule:
#y=f(x)g(x)iffdy/dx=f'(x)g(x)+g'(x)f(x)#
#:.1/ydy/dx=cosxlogx+sinx/x#
Multiplying through by #y#, we have
#dy/dx=y(cosxlogx+sinx/x)#
Remembering that we defined #y=x^sinx#, we get
#dy/dx=x^sinx(cosxlogx+sinx/x)#