What is the derivative of sin(x)/xsin(x)x?

2 Answers
Jun 14, 2016

(xcos(x)-sin(x))/x^2xcos(x)sin(x)x2

Explanation:

To find the derivative of a function in the form f(x)/g(x)f(x)g(x), use the quotient rule:

d/dx(f(x)/g(x))=(f^'(x)g(x)-g^'(x)f(x))/(g(x))^2

For the function sin(x)/x, we see that:

f(x)=sin(x)" "=>" "f^'(x)=cos(x)

g(x)=x" "=>" "g^'(x)=1

Plugging these into the quotient rule, we see that:

d/dx(sin(x)/x)=(cos(x)*x-1*sin(x))/x^2

=(xcos(x)-sin(x))/x^2

Jun 14, 2016

(xcosx-sinx)/x^2.

Explanation:

Rule : d/dx(f(x)/g(x))=(g(x)*f'(x)-f(x)*g'(x))/(g(x))^2

:. d/dx (sinx/x) ={x*(sinx)'-(sinx)(x)'}/x^2=(xcosx-sinx)/x^2.