What is the derivative of pi^xπx?

1 Answer
Jun 26, 2016

d/dxpi^x = pi^xln(pi)ddxπx=πxln(π)

Explanation:

d/dxpi^x = d/dx e^ln(pi^x)ddxπx=ddxeln(πx)

=d/dxe^(xln(pi))=ddxexln(π)

=e^(xln(pi))(d/dxxln(pi))=exln(π)(ddxxln(π))

(By applying the chain rule with the functions e^xex and xln(pi)xln(π))

=e^ln(pi^x)ln(pi)=eln(πx)ln(π)

=pi^xln(pi)=πxln(π)

Note that this method can be generalized to show that d/dxa^x = a^xln(a)ddxax=axln(a) for any constant a>0a>0