What is the derivative of ln((x^2-4)/(2x+5))ln(x242x+5)?

1 Answer
Jul 30, 2016

(dy)/(dx) = (2x^2+10x+8)/((x^2-4)(2x+5))dydx=2x2+10x+8(x24)(2x+5)

Explanation:

We have a function y(u(x)) so we need to use the chain rule.

(dy)/(dx) = (dy)/(du)(du)/(dx)dydx=dydududx

Set u = (x^2-4)/(2x+5)u=x242x+5 and using the quotient rule obtain:

(du)/(dx) = (2x(2x+5) - 2(x^2-4))/(2x+5)^2 = (2x^2+10x+8)/(2x+5)^2dudx=2x(2x+5)2(x24)(2x+5)2=2x2+10x+8(2x+5)2

y = ln(u) implies (dy)/(du) = 1/u = (2x+5)/(x^2-4)y=ln(u)dydu=1u=2x+5x24

therefore (dy)/(dx) = (2x^2+10x+8)/((x^2-4)(2x+5))