The given function is
(ln x) ^ 2 / x ^ 2
We are to find out I = int (ln x) ^ 2 / x ^ 2dx
Let
ln x =u =>x=e^u
Differentiating w.r.t x we have
(d(x))/(dx) =(d(e^u))/(du)*(du)/(dx)
=>1 =e^u*(du)/(dx)
=>dx=e^udu
Now changing the variable the integral becomes
I=intu^2/(e^(2u))*e^udu=intu^2*e^-udu
using integration by parts
I= u^2inte^-udu-int((d(u^2))/(du)inte^-udu)du
= u^2inte^-udu-int2u(-e^-u)du
= u^2inte^-udu+int2ue^-udu
= u^2inte^-udu+2intue^-udu
= u^2inte^-udu+2uinte^-udu-2int((du)/(du)inte^-udu)du
= u^2inte^-udu+2uinte^-udu-2int(-e^-u)du
= u^2inte^-udu+2uinte^-udu+2int(e^-u)du
=-u^2e^-u-2ue^-u-2e^-u+c
Inserting u = lnx and e^-u =1/x
I=-(ln x)^2/x-(2ln x)/x-2/x+c