What is the antiderivative of (ln x) ^ 2 / x ^ 2?

1 Answer
Jul 1, 2016

I=-(ln x)^2/x-(2ln x)/x-2/x+c

Explanation:

The given function is

(ln x) ^ 2 / x ^ 2

We are to find out I = int (ln x) ^ 2 / x ^ 2dx

Let
ln x =u =>x=e^u

Differentiating w.r.t x we have

(d(x))/(dx) =(d(e^u))/(du)*(du)/(dx)

=>1 =e^u*(du)/(dx)

=>dx=e^udu

Now changing the variable the integral becomes

I=intu^2/(e^(2u))*e^udu=intu^2*e^-udu

using integration by parts

I= u^2inte^-udu-int((d(u^2))/(du)inte^-udu)du

= u^2inte^-udu-int2u(-e^-u)du

= u^2inte^-udu+int2ue^-udu

= u^2inte^-udu+2intue^-udu

= u^2inte^-udu+2uinte^-udu-2int((du)/(du)inte^-udu)du

= u^2inte^-udu+2uinte^-udu-2int(-e^-u)du

= u^2inte^-udu+2uinte^-udu+2int(e^-u)du

=-u^2e^-u-2ue^-u-2e^-u+c

Inserting u = lnx and e^-u =1/x

I=-(ln x)^2/x-(2ln x)/x-2/x+c