What is f(x) = int xsin2x-6cotx dx if f(pi/4)=1 ?

1 Answer
Feb 9, 2018

f(x)=-x/2*cos2x+1/4*sin2x-6ln(sinx)+1+(pisqrt2)/16-3Ln2

Explanation:

Due to int xsin2x*dx=x*(-1/2*cos2x)-int (-1/2)*cos2x*dx

=-x/2*cos2x+1/2intcos2x*dx

=-x/2*cos2x+1/4sin2x+C

f(x)=int (xsin2x-6cotx)*dx=-x/2*cos2x+1/4*sin2x-6ln(sinx)+C

After imposing f(pi/4)=1 condition,

-pi/8*sin(pi/4)-6Ln(sin(pi/4))+C=1

-(pisqrt2)/16-6Ln(sqrt2/2)+C=1

-(pisqrt2)/16+3Ln2+C=1

C=1+(pisqrt2)/16-3Ln2

Thus,

f(x)=-x/2*cos2x+1/4*sin2x-6ln(sinx)+1+(pisqrt2)/16-3Ln2