What is f(x) = int xe^x if f(2)=3 ?

1 Answer
Mar 5, 2018

f(x)=xe^x-e^x+3-e^2

Explanation:

f(x)=intxe^xdx, f(2)=3

we use integration by parts

f(x)=intu(dv)/(dx)dx=uv-intv(du)/(dx)dx

in this case

u=x=>(du)/(dx)=1

(dv)/(dx)=e^x=>v=e^x

:.f(x)=xe^x-inte^xdx

f(x)=xe^x-e^x+c

f(2)=3

:. f(2)=3=2e^2-e^2+c

c=3-e^2

f(x)=xe^x-e^x+3-e^2