What is f(x) = int x-sqrt(x^2+1) dxf(x)=xx2+1dx if f(2) = 7 f(2)=7?

2 Answers
Jan 15, 2017

f(x)=1/2x^2-1/2xsqrt(x^2+1)-1/2lnabs(sqrt(x^2+1)+x)+5+sqrt5+1/2ln(sqrt5+2)f(x)=12x212xx2+112lnx2+1+x+5+5+12ln(5+2)

Explanation:

f(x)=intx-sqrt(x^2+1)color(white).dxf(x)=xx2+1.dx

Split up the integral:

f(x)=intxcolor(white).dx-intsqrt(x^2+1)color(white).dxf(x)=x.dxx2+1.dx

The first is easily done:

f(x)=1/2x^2-intsqrt(x^2+1)color(white).dxf(x)=12x2x2+1.dx

Let J=intsqrt(x^2+1)color(white).dxJ=x2+1.dx.

Solve the remaining integral with the substitution x=tanthetax=tanθ. This implies that dx=sec^2thetacolor(white).d thetadx=sec2θ.dθ. So:

J=intsqrt(tan^2theta+1)(sec^2thetacolor(white).d theta)J=tan2θ+1(sec2θ.dθ)

Note that 1+tan^2theta=sec^2theta1+tan2θ=sec2θ so sqrt(1+tan^2theta)=sectheta1+tan2θ=secθ:

J=intsec^3thetacolor(white).d thetaJ=sec3θ.dθ

This can be solved through integration by parts. Let:

{(u=sectheta" "=>" "du=secthetatanthetacolor(white).d theta),(dv=sec^2thetacolor(white).d theta" "=>" "v=tantheta):}

Therefore:

J=secthetatantheta-intsecthetatan^2thetacolor(white).d theta

Letting tan^2theta=sec^2theta-1:

J=secthetatantheta-intsectheta(sec^2theta-1)color(white).d theta

J=secthetatantheta-intsec^3thetacolor(white).d theta+intsecthetacolor(white).d theta

Note that the original integral is back on the right side, so we can replace it with J. Also note that intsecthetacolor(white).d theta=lnabs(sectheta+tantheta), which is a well-known integral.

J=secthetatantheta-J+lnabs(sectheta+tantheta)

Adding J to both sides of the equation then dividing by 2 to solve for J again gives:

J=1/2secthetatantheta+1/2lnabs(sectheta+tantheta)

Now returning to the original integral:

f(x)=1/2x^2-J

f(x)=1/2x^2-1/2secthetatantheta-1/2lnabs(sectheta+tantheta)

Now we can return to x from theta. Our original substitution was x=tantheta. This also implies that sectheta=sqrt(tan^2theta+1)=sqrt(x^2+1). Hence:

f(x)=1/2x^2-1/2xsqrt(x^2+1)-1/2lnabs(sqrt(x^2+1)+x)+C

Solve for C using the original condition f(2)=7:

7=1/2(2^2)-1/2(2)sqrt(2^2+1)-1/2lnabs(sqrt(2^2+1)+2)+C

7=2-sqrt5-1/2ln(sqrt5+2)+C

So:

C=5+sqrt5+1/2ln(sqrt5+2)

Finally:

f(x)=1/2x^2-1/2xsqrt(x^2+1)-1/2lnabs(sqrt(x^2+1)+x)+5+sqrt5+1/2ln(sqrt5+2)

Jan 15, 2017

f(x) = 1/2x^2 -1/2xsqrt(1 + x^2) - 1/2ln|x + sqrt(1 + x^2)| + 6.51

Explanation:

ATTENTION: LONG ANSWER AHEAD!!

f(x) = intxdx - intsqrt(x^2 + 1)dx

We are going to need trig substitution to solve intsqrt(x^2 + 1)dx.

Let x = tantheta. Then dx= sec^2theta d theta.

intsqrt((tan theta)^2 + 1)sec^2theta d theta

intsqrt(sec^2theta) sec^2theta d theta

intsec^3theta d theta

We can use integration by parts to attack this problem. The formula is int(udv) = uv - int(vdu).

Let dv = sec^2theta d theta. Then v = tantheta. Let u = sectheta. Then du = secthetatantheta d theta.

intsec^3thetad theta = tan thetasectheta - int(tanthetasecthetatantheta d theta)

intsec^3thetad theta = tan thetasectheta - inttan^2thetasecthetad theta

intsec^3thetad theta = tanthetasectheta - int(sec^2theta - 1)sec theta d theta

intsec^3thetad theta = tan thetasectheta - intsec^3thetad theta + intsectheta d theta

We are now faced with a problem. In the integral, we are left with intsec^3thetad theta, which is what we were having troubles with at first. The solution is to add intsec^3thetad theta to both sides.

intsec^3thetad theta + intsec^3thetad theta= tanthetasectheta - intsec^3thetad theta + intsec^3thetad theta + intsectheta d theta

2intsec^3thetad theta = tanthetasectheta + intsectheta d theta

2intsec^3thetad theta = tan thetasectheta + ln|tantheta + sectheta| + C

intsec^3theta d theta = 1/2tanthetasectheta +1/2ln|tantheta + sectheta| + C

Reverse the substitutions by drawing a triangle and finding the correct ratios.

enter image source here

intsqrt(x^2 + 1)dx = 1/2xsqrt(1 + x^2) + 1/2ln|x + sqrt(1 + x^2)| + C

Now put this together with the int(x)dx= 1/2x^2 to get:

f(x) = 1/2x^2 - (1/2xsqrt(1 + x^2) + 1/2ln|x + sqrt(1 + x^2)|) + C

f(x) = 1/2x^2 -1/2xsqrt(1 + x^2) - 1/2ln|x + sqrt(1 + x^2)| + C

All we have to do now is solve for C:

7= 1/2(2)^2 - 1/2(2)sqrt(1 + 2^2) - 1/2ln|2 + sqrt(1 + 2^2)| + C

7 = 2 - sqrt(5) + 1/2ln|2 + sqrt(5)| + C

5 + sqrt(5) - 1/2ln(2 + sqrt(5) = C

Use a calculator to find the approximation 6.51.

Hence, f(x) = 1/2x^2 -1/2xsqrt(1 + x^2) - 1/2ln|x + sqrt(1 + x^2)| + 6.51

Hopefully this helps!