What is f(x) = int x-sqrt(x^2+1) dxf(x)=∫x−√x2+1dx if f(2) = 7 f(2)=7?
2 Answers
Explanation:
f(x)=intx-sqrt(x^2+1)color(white).dxf(x)=∫x−√x2+1.dx
Split up the integral:
f(x)=intxcolor(white).dx-intsqrt(x^2+1)color(white).dxf(x)=∫x.dx−∫√x2+1.dx
The first is easily done:
f(x)=1/2x^2-intsqrt(x^2+1)color(white).dxf(x)=12x2−∫√x2+1.dx
Let
Solve the remaining integral with the substitution
J=intsqrt(tan^2theta+1)(sec^2thetacolor(white).d theta)J=∫√tan2θ+1(sec2θ.dθ)
Note that
J=intsec^3thetacolor(white).d thetaJ=∫sec3θ.dθ
This can be solved through integration by parts. Let:
{(u=sectheta" "=>" "du=secthetatanthetacolor(white).d theta),(dv=sec^2thetacolor(white).d theta" "=>" "v=tantheta):}
Therefore:
J=secthetatantheta-intsecthetatan^2thetacolor(white).d theta
Letting
J=secthetatantheta-intsectheta(sec^2theta-1)color(white).d theta
J=secthetatantheta-intsec^3thetacolor(white).d theta+intsecthetacolor(white).d theta
Note that the original integral is back on the right side, so we can replace it with
J=secthetatantheta-J+lnabs(sectheta+tantheta)
Adding
J=1/2secthetatantheta+1/2lnabs(sectheta+tantheta)
Now returning to the original integral:
f(x)=1/2x^2-J
f(x)=1/2x^2-1/2secthetatantheta-1/2lnabs(sectheta+tantheta)
Now we can return to
f(x)=1/2x^2-1/2xsqrt(x^2+1)-1/2lnabs(sqrt(x^2+1)+x)+C
Solve for
7=1/2(2^2)-1/2(2)sqrt(2^2+1)-1/2lnabs(sqrt(2^2+1)+2)+C
7=2-sqrt5-1/2ln(sqrt5+2)+C
So:
C=5+sqrt5+1/2ln(sqrt5+2)
Finally:
f(x)=1/2x^2-1/2xsqrt(x^2+1)-1/2lnabs(sqrt(x^2+1)+x)+5+sqrt5+1/2ln(sqrt5+2)
Explanation:
ATTENTION: LONG ANSWER AHEAD!!
We are going to need trig substitution to solve
Let
intsqrt((tan theta)^2 + 1)sec^2theta d theta
intsqrt(sec^2theta) sec^2theta d theta
intsec^3theta d theta
We can use integration by parts to attack this problem. The formula is
Let
We are now faced with a problem. In the integral, we are left with
Reverse the substitutions by drawing a triangle and finding the correct ratios.
Now put this together with the
All we have to do now is solve for
Use a calculator to find the approximation
Hence,
Hopefully this helps!