What is f(x) = int x+5sqrt(x^2+1) dx if f(2) = 7 ?

1 Answer
Feb 20, 2017

f(x)=1/2(x^2+5xsqrt(x^2+1)+5ln|x+sqrt(x^2+1)|)-98/10

Explanation:

f(x)=intx+5sqrt(x^2+1) dx

Let x = tanu

dx/(du)=sec^2u

dx=sec^2u du

cosu=1/sqrt(1+x^2)

sqrt(1+x^2)=1/cosu=secu

intf(x) dx=intx+5intsecusec^2u du

intx dx=1/2x^2+C

5intsecusec^2u du=5(secutanu-intsecutan^2u du)

=5 secu tanu-5 int sec^3u du+5intsec du

10intsecusec^2u du=5secutanu+5ln|secu+tanu|+C

5intsecusec^2u du=1/2(5secutanu+5ln|secu+tanu|)+C

intf(x) dx=1/2(x^2+5xsqrt(x^2+1)+5ln|x+sqrt(x^2+1)|)+C

f(2)=7=1/2(4+10sqrt(5)+5ln|2+sqrt5|)+C

C=-98/10 to 2 dp.

f(x)=1/2(x^2+5xsqrt(x^2+1)+5ln|x+sqrt(x^2+1)|)-98/10

If you don't understand any stages, feel free to ask below.