f(x)=intx+5sqrt(x^2+1) dx
Let x = tanu
dx/(du)=sec^2u
dx=sec^2u du
cosu=1/sqrt(1+x^2)
sqrt(1+x^2)=1/cosu=secu
intf(x) dx=intx+5intsecusec^2u du
intx dx=1/2x^2+C
5intsecusec^2u du=5(secutanu-intsecutan^2u du)
=5 secu tanu-5 int sec^3u du+5intsec du
10intsecusec^2u du=5secutanu+5ln|secu+tanu|+C
5intsecusec^2u du=1/2(5secutanu+5ln|secu+tanu|)+C
intf(x) dx=1/2(x^2+5xsqrt(x^2+1)+5ln|x+sqrt(x^2+1)|)+C
f(2)=7=1/2(4+10sqrt(5)+5ln|2+sqrt5|)+C
C=-98/10 to 2 dp.
f(x)=1/2(x^2+5xsqrt(x^2+1)+5ln|x+sqrt(x^2+1)|)-98/10
If you don't understand any stages, feel free to ask below.