What is f(x) = int (x-4)^3 dxf(x)=∫(x−4)3dx if f(3)=-1 f(3)=−1?
1 Answer
Mar 17, 2016
Explanation:
To integrate, use substitution, then use the rule
intu^ndu=u^(n+1)/(n+1)+C∫undu=un+1n+1+C
If we set
f(x)=intu^3duf(x)=∫u3du
Applying the rule, this becomes
f(x)=u^4/4+Cf(x)=u44+C
f(x)=(x-4)^4/4+Cf(x)=(x−4)44+C
Now, we can determine
-1=(3-4)^4/4+C−1=(3−4)44+C
=-1=(-1)^4/4+C=−1=(−1)44+C
=-1=1/4+C=−1=14+C
-5/4=C−54=C
So,
f(x)=(x-4)^4/4-5/4=((x-4)^4-5)/4f(x)=(x−4)44−54=(x−4)4−54