What is f(x) = int (x^2+x)/((x+3)(x+4) ) dx if f(-2)=2 ?

1 Answer
Dec 12, 2017

f(x)=x+4+12Ln(2)+6Ln(x+3)-12Ln(x+4)

Explanation:

f(x)=int (x^2+x)/[(x+3)*(x+4)]*dx

=int (x^2+7x+12-6x-12)/[(x+3)*(x+4)]*dx

=int dx-int (6x+12)/[(x+3)*(x+4)]*dx

=x-int (6x+12)/[(x+3)*(x+4)]*dx+C

Now I solved int (6x+12)/[(x+3)*(x+4)]*dx integral,

(6x+12)/[(x+3)*(x+4)]=A/(x+3)+B/(x+4)

After expanding denominator,

A*(x+4)+B*(x+3)=6x+12

Set x=-4, -B=12, so B=12

Set x=-3, A=-6

Hence,

f(x)=int (x^2+x)/[(x+3)*(x+4)]*dx

=x-[int -6/(x+3)*dx+12/(x+4)*dx]+C

=x-(-6Ln(x+3)+12Ln(x+4))+C

=x+6Ln(x+3)-12Ln(x+4)+C

After using f(-2)=2 condition,

-2+6Ln(-2+3)-12Ln(-2+4)+C=2

C+6Ln(1)-12Ln(2)-2=2

C+0-12Ln(2)-2=2

C=4+12Ln2

Thus,

f(x)=x+4+12Ln(2)+6Ln(x+3)-12Ln(x+4)