What is F(x) = int sin3x-sinxcos^2x dxF(x)=∫sin3x−sinxcos2xdx if F(pi) = 1 F(π)=1?
1 Answer
Explanation:
We can split this into two integrals:
F(x)=intsin(3x)dx-intsin(x)cos^2(x)dxF(x)=∫sin(3x)dx−∫sin(x)cos2(x)dx
We will use substitution for each integral. Examining just the first, let
Multiply the interior of the integral by
=1/3intsin(3x)(3)dx-intsin(x)cos^2(x)dx=13∫sin(3x)(3)dx−∫sin(x)cos2(x)dx
Now that we have our
=1/3intsin(u)du-intsin(x)cos^2(x)dx=13∫sin(u)du−∫sin(x)cos2(x)dx
This is a common integral:
=-1/3cos(u)-intsin(x)cos^2(x)dx=−13cos(u)−∫sin(x)cos2(x)dx
=-1/3cos(3x)-intsin(x)cos^2(x)dx=−13cos(3x)−∫sin(x)cos2(x)dx
For the second integral, let
If we let the
=-1/3cos(3x)+intcos^2(x)(-sin(x))dx=−13cos(3x)+∫cos2(x)(−sin(x))dx
Now, substitute our known values for
=-1/3cos(3x)+intv^2dv=−13cos(3x)+∫v2dv
Integrate using the rule:
=-1/3cos(3x)+v^3/3+C=−13cos(3x)+v33+C
=-1/3cos(3x)+cos^3(x)/3+C=−13cos(3x)+cos3(x)3+C
Combining the fractions, we see that
F(x)=(cos^3(x)-cos(3x))/3+CF(x)=cos3(x)−cos(3x)3+C
We now can determine the value of the constant of integration
1=(cos^3(pi)-cos(3pi))/3+C1=cos3(π)−cos(3π)3+C
Note that
1=((-1)^3-(-1))/3+C1=(−1)3−(−1)3+C
1=(-1+1)/3+C1=−1+13+C
1=0+C1=0+C
C=1C=1
Thus,
F(x)=(cos^3(x)-cos(3x))/3+1F(x)=cos3(x)−cos(3x)3+1
F(x)=(cos^3(x)-cos(3x)+3)/3F(x)=cos3(x)−cos(3x)+33