What is #f(x) = int e^(2x)-e^x+x dx# if #f(4 ) = 2 #? Calculus Techniques of Integration Evaluating the Constant of Integration 1 Answer Ratnaker Mehta Jul 4, 2016 #f(x)=e^(2x)/2-e^x+x^2/2+e^4-e^8/2-6# Explanation: Let #I=int(e^(2x)-e^x+x)dx=e^(2x)/2-e^x+x^2/2+C#, #C# is a constant of integration. To determine #C#, we are given the cond. that #f(4)=2#. Now, #f(x)=I=e^(2x)/2-e^x+x^2/2+C.# Hence, #f(4)=2 rArr e^8/2-e^4+8+C=2 rArr C=e^4-e^8/2-6. # Sub.ing this value of #C# in #I#, we get, #f(x)=e^(2x)/2-e^x+x^2/2+e^4-e^8/2-6# Answer link Related questions How do you find the constant of integration for #intf'(x)dx# if #f(2)=1#? What is a line integral? What is #f(x) = int x^3-x# if #f(2)=4 #? What is #f(x) = int x^2+x-3# if #f(2)=3 #? What is #f(x) = int xe^x# if #f(2)=3 #? What is #f(x) = int x - 3 # if #f(2)=3 #? What is #f(x) = int x^2 - 3x # if #f(2)=1 #? What is #f(x) = int 1/x # if #f(2)=1 #? What is #f(x) = int 1/(x+3) # if #f(2)=1 #? What is #f(x) = int 1/(x^2+3) # if #f(2)=1 #? See all questions in Evaluating the Constant of Integration Impact of this question 1608 views around the world You can reuse this answer Creative Commons License