What is f(x) = int -cos2x dxf(x)=cos2xdx if f(pi/3) = 0 f(π3)=0?

1 Answer
Oct 6, 2016

f(x)=-1/2sin2x+sqrt3/4.f(x)=12sin2x+34.

Explanation:

f(x)=int-cos2xdx=-(sin2x)/2+Cf(x)=cos2xdx=sin2x2+C

To determine CC, we make use of the cond. that, f(pi/3)=0f(π3)=0

f(pi/2)=0 rArr -1/2sin(2(pi/3))+C=0f(π2)=012sin(2(π3))+C=0

:. C=1/2sin(pi-pi/3)=1/2sin(pi/3)=1/2*sqrt3/2=sqrt3/4

:. f(x)=-1/2sin2x+sqrt3/4.