What is f(x) = int 2sinx-xcosx dxf(x)=2sinxxcosxdx if f((7pi)/6) = 0 f(7π6)=0?

1 Answer
Jun 14, 2018

f(x)=-3cosx-xsinx-(3sqrt3)/2-(7pi)/12f(x)=3cosxxsinx3327π12

Explanation:

Split up the integral into
f(x)=2intsinxdx-intxcosxdxf(x)=2sinxdxxcosxdx
Using integration by parts, we get
f(x)=-2cosx-xsinx-cosx+Cf(x)=2cosxxsinxcosx+C
f(x)=-3cosx-xsinx+Cf(x)=3cosxxsinx+C
Substituting x=(7pi)/6x=7π6, we get
f((7pi)/6)=0=-3cos((7pi)/6)-(7pi)/6sin((7pi)/6)+Cf(7π6)=0=3cos(7π6)7π6sin(7π6)+C
Solving for C, we get
C=-(3sqrt3)/2-(7pi)/12C=3327π12
Therefore, f(x)=-3cosx-xsinx-(3sqrt3)/2-(7pi)/12f(x)=3cosxxsinx3327π12.