What is f(x) = int 1/((x+3)(x^2+9)) dxf(x)=1(x+3)(x2+9)dx if f(-1) = 0 f(1)=0?

1 Answer

1/18*Ln(x+3)-1/36*Ln(x^2+9)+1/18*arctan(x/3)-1/18*arctan(-1/3)+1/36*Ln(5/2)118ln(x+3)136ln(x2+9)+118arctan(x3)118arctan(13)+136ln(52)

Explanation:

1) I decomposed integrand into basic fractions

2) I solved basic integrals for finding indefinitely integral.

3) I imposed f(-1)=0f(1)=0 condition for finding CC.

I decompose integrand into basic fractions,

1/[(x+3)*(x^2+9)]=A/(x+3)+(Bx+C)/(x^2+9)1(x+3)(x2+9)=Ax+3+Bx+Cx2+9

A(x^2+9)+(Bx+C)(x+3)=1#

Set x=-3x=3, 18A=118A=1 or A=1/18A=118

Set x=0x=0, 9A+3C=19A+3C=1, hence C=1/6C=16

Set x=1x=1, 10A+4B+4C=110A+4B+4C=1, so B=-1/18B=118

Consequently,

int dx/[(x+3)*(x^2+9)]dx(x+3)(x2+9)

=1/18118int dx/(x+3)dxx+3-1/18118int ((x-3)*dx)/(x^2+9)(x3)dxx2+9

=1/18118Ln(x+3)ln(x+3)-1/36136int ((2x-6)*dx)/(x^2+9)(2x6)dxx2+9

=1/18118Ln(x+3)ln(x+3)-1/36136int (2x*dx)/(x^2+9)2xdxx2+9+1/18118*int (3*dx)/(x^2+9)3dxx2+9

=1/18*Ln(x+3)-1/36*Ln(x^2+9)+1/18*arctan(x/3)+C118ln(x+3)136ln(x2+9)+118arctan(x3)+C

After imposing f(-1)=0f(1)=0 condition,

=1/18*Ln2-1/36*Ln10+1/18*arctan(-1/3)+C=0118ln2136ln10+118arctan(13)+C=0

C=-1/18*arctan(-1/3)+1/36*Ln10-1/18*Ln2118arctan(13)+136ln10118ln2

=-1/18*arctan(-1/3)+1/36*Ln(5/2)=118arctan(13)+136ln(52)

Thus solution of this problem,

1/18*Ln(x+3)-1/36*Ln(x^2+9)+1/18*arctan(x/3)-1/18*arctan(-1/3)+1/36*Ln(5/2)118ln(x+3)136ln(x2+9)+118arctan(x3)118arctan(13)+136ln(52)