Is #f(x)=(x^2e^x)/(x+2)# increasing or decreasing at #x=-1#?
1 Answer
Thus,
Explanation:
To determine if
Here, you can use the quotient rule:
if
#f'(x) = (g'(x) h(x) - g(x) h'(x)) /(h^2(x))#
For you,
The derivatives of
#g'(x) = x^2e^x + 2xe^x# (with the product rule)
#h'(x) = 1#
Thus, your derivative is:
#f'(x) = ((x^2e^x + 2xe^x)(x+2) - x^2e^x * 1) / (x+2)^2#
# = (e^x(x^2 + 2x)(x+2) - e^x x^2) / (x+2)^2#
# = (e^x[(x^2 + 2x)(x+2) - x^2]) / (x+2)^2#
# = (e^x(x^3 - 3x^2 + 4x)) / (x+2)^2#
Now, let's evaluate the derivative at
#f'(-1) = (e^(-1)((-1)^3 - 3(-1)^2 +4*(-1))) / (-1+2)^2#
# = e^(-1)(-1 - 3 -4) #
# = -8 e^(-1)#
As
#f'(-1) = -8 e^(-1) < 0# .
Thus,