Is f(x)=(-2x^3-6x^2-3x+2)/(2x-1)f(x)=2x36x23x+22x1 increasing or decreasing at x=0x=0?

1 Answer
Jun 16, 2016

Decreasing

Explanation:

We think about evaluating f(1)f(1) and f(0)f(0)
If f(1)-f(0)<0f(1)f(0)<0 then it is decreasing
iff(1)-f(0)>0f(1)f(0)>0 then it is increasing

Let's calculate f(1)f(1) and f(0)f(0)

f(1)=(-2(1)^3-6(1)^2-3(1)+2)/(2(1)-1)f(1)=2(1)36(1)23(1)+22(1)1

f(1)=(-2-6-3+2)/(2-1)f(1)=263+221
f(1)=-9f(1)=9

f(0)=(-2(0)^3-6(0)^2-3(0)+2)/(2(0)-1)f(0)=2(0)36(0)23(0)+22(0)1
f(0)=-2f(0)=2

We have: f(1)-f(0)=-9-(-2)=-9+2=-7f(1)f(0)=9(2)=9+2=7
So,f(1)-f(0)<0f(1)f(0)<0

f(1)<f(0)f(1)<f(0)
So, the function is decreasing.