If f(x)=ex and g(x)=11x, how do you differentiate f(g(x)) using the chain rule?

2 Answers
Nov 22, 2017

Substitute g in for x to find f(g) from f(x), and recall ddxf(g(x))=dfdgdgdx. See explanation.

Explanation:

Recall that the chain rule states that if y=f(g(x)),dydx=dfdgdgdx

We have f(x)=ex,g(x)=11x

(This step is unnecessary, but in case the student is curious, to find f(g) you substitute g in for x in f(x), making f(g)=eg

We know that ddukeu=keu, and ddx(1(1x)12)=121(1x)32=12(1x)32.
Thus...

dydx=dfdgdgdx=12(1x)32e11x=e11x2(1x)32

Nov 22, 2017

ddxf(g(x))=e1x2(1x)32

Explanation:

f(x)=exandg(x)=11x

Replace x in f(x) with g(x)#

f(g(x))=e1ix

=e(1x)12

Apply the chain rule and standard differential

ddxf(g(x))=e(1x)12ddx(1x)12

Apply the chain rule and power rule

ddxf(g(x))=e(1x)12(12)(1x)32ddx(1x)

=e(1x)12(12)(1x)32(1)

=e11x12(1x)32

=e1x2(1x)32