If f(x) =-e^(2x-1) and g(x) = 2cos^2x , what is f'(g(x)) ?

1 Answer
Feb 2, 2017

WOW...this is steep!

Explanation:

Ok, first let us find f(g(x)).
We get:
f(g(x))=-e^((2*color(red)(2cos^2x))-1)=-e^(4cos^2x-1)

Now we derive using the Chain Rule:

f'(g(x))=-e^(4cos^2x-1)*[8cos(x)(-sin(x)]=8cos(x)sin(x)*e^(4cos^2x-1)

So:
f'(g(x))=8cos(x)sin(x)*e^(4cos^2x-1)