How to solve \intx^2\sqrt(9-x^2)dx with integration by parts?

Does it involve trig substitution?

1 Answer
May 2, 2018

the answer intsin^2theta-sin^4theta*d(theta)=-(sin(4sin^-1(x))-4*sin^-1(x))/32

Explanation:

show the steps

intx^2\sqrt(9-x^2)dx

suppose
a^2=9anda=3

b^2=1andb=1

x=a/b*sintheta=sintheta

dx=costheta*d(theta)

intsin^2theta*costheta*costheta*d(theta)

intsin^2theta*cos^2theta*d(theta)

intsin^2theta*(1-sin^2theta)*d(theta)

intsin^2theta-sin^4theta*d(theta)

intsin^2theta*d(theta)=1/2[theta-costheta*sintheta]

intsin^4theta*d(theta)=(sin(4*theta)-8*sin(2*theta)+12*theta)/32

intsin^2theta-sin^4theta*d(theta)=-(sin(4theta)-4*theta)/32

theta=sin^-1x

intsin^2theta-sin^4theta*d(theta)=-(sin(4sin^-1(x))-4*sin^-1(x))/32