How do you write the equation in point slope form given (-7,2) and m=3?

Feb 27, 2017

$\left(y - \textcolor{red}{2}\right) = \textcolor{b l u e}{3} \left(x + \textcolor{red}{7}\right)$

Explanation:

The point-slope formula states: $\left(y - \textcolor{red}{{y}_{1}}\right) = \textcolor{b l u e}{m} \left(x - \textcolor{red}{{x}_{1}}\right)$

Where $\textcolor{b l u e}{m}$ is the slope and $\textcolor{red}{\left(\left({x}_{1} , {y}_{1}\right)\right)}$ is a point the line passes through.

Substituting the values from the problem gives:

$\left(y - \textcolor{red}{2}\right) = \textcolor{b l u e}{3} \left(x - \textcolor{red}{- 7}\right)$

$\left(y - \textcolor{red}{2}\right) = \textcolor{b l u e}{3} \left(x + \textcolor{red}{7}\right)$

Feb 27, 2017

Slope-point form: $y - 2 = 3 \left(x + 7\right)$

Explanation:

The general slope-point form for a line through the point $\left(\textcolor{b l u e}{a} , \textcolor{red}{b}\right)$ with a slope of $\textcolor{g r e e n}{m}$ is
$\textcolor{w h i t e}{\text{XXX}} y - \textcolor{red}{b} = \textcolor{g r e e n}{m} \left(x - \textcolor{b l u e}{a}\right)$