How do you use the chain rule to differentiate y=(cosx1+sinx)5?

1 Answer
Sep 20, 2017

5cos4x(1+sinx)5

Explanation:

y=(cosx1+sinx)5
dydx=ddx((cosx1+sinx)5)
=5(cosx1+sinx)4(1+sinx)(ddx(cosx))cosxddx(1+sinx)(1+sinx)2

=5(cosx1+sinx)4((1+sinx)(sinx)cosx(cosx)(1+sinx)2)

=5(cosx1+sinx)4(sinxsin2xcos2x(1+sinx)2)

=5(cosx1+sinx)4(sinx(sin2x+cos2x)(1+sinx)2)

=5(cosx1+sinx)4(sinx1(1+sinx)2)

=5(cosx1+sinx)411+sinx
=5cos4x(1+sinx)5